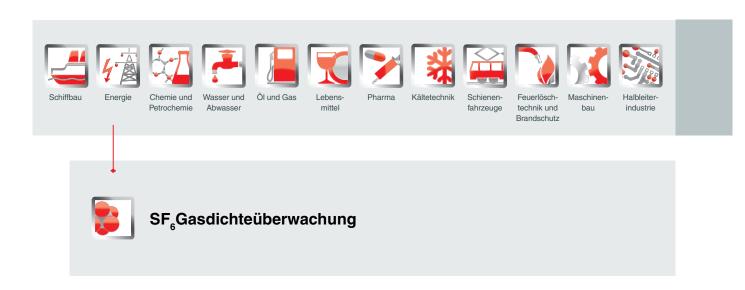
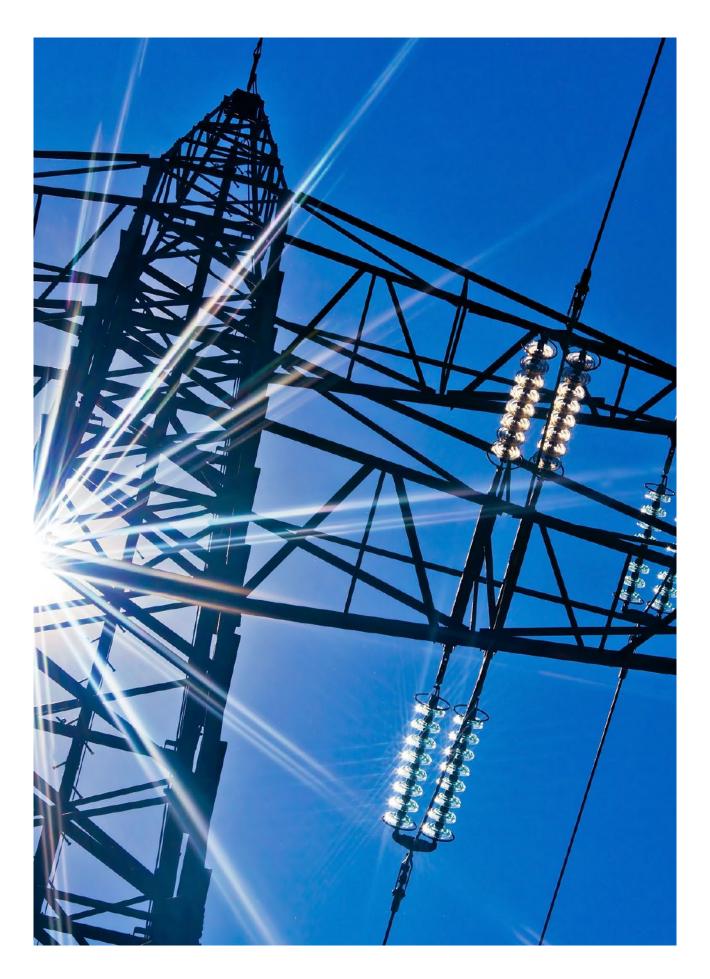


Die Energiebranche ist und bleibt eine der Wachstumsbranchen der Zukunft. Der Energiehunger unserer Zivilisation wächst ständig. So muss sich auch die Energiebranche ständig neuen Anforderungen stellen. Alternative Energiequellen wie beispielsweise Photovoltaik, Windenergie und Blockheizkraftwerke müssen in zunehmendem Maße in das Energienetz eingebunden werden, um die klassischen Energieträger zu ergänzen und teilweise abzulösen.

Die Zukunft gehört dem "smart grid" – das sind intelligente Energienetze mit vielen dezentralen Quellen und zugleich flächendeckender leistungsstarker Verfügbarkeit für die Elektromobilität. Intelligentes Netzmanagement, welches Quellen und Verbraucher bedarfsgerecht zuschaltet und trennt, erreicht die erforderliche Flexibilität nur durch kompakte Leistungsschalter, mit der Fähigkeit der Vernetzbarkeit zum Online-Monitoring.


 ${\rm SF_6}$ -Gas ist der Schlüssel zu Kompaktsystemen, die als hermetisch gekapselte Module die Funktionsteile der Schaltanlage von der Umwelt isolieren. Die hervorragenden Isolationsund Funkenlöscheigenschaften des Gases minimieren den inneren Schaltverschleiß der Anlage. ${\rm SF_6}$ -Gas isolierte Schaltanlagen bestechen durch hohe Verfügbarkeit und jahrzehntelange Wartungsfreiheit. Das setzt hohe Anforderungen an die Gasdichteüberwachung, die in den klimatischen Bedingungen aller Aufstellorte zuverlässig funktionieren muss. Von $-50~{\rm ^{\circ}C}$ in Sibirien bis zu $+70~{\rm ^{\circ}C}$ in Schalträumen am Äquator oder im Bergbau.


In dieser Broschüre finden Sie eine Auswahl von Mess- und Überwachungsgeräten, die eigens für die spezifischen Anforderungen an unterschiedlichste Applikationen mit SF_e-Gas und SF_e/N₂-Gasgemischen entwickelt wurden. Sie suchen ein Gerät für einen speziellen Einsatzbereich? Gerne beraten wir Sie, das beste Gerät für Ihre Anwendung zu finden. Sprechen Sie uns an!

Branchenkompetenz

Einsatzfelder und Anwendungsbeispiele unserer Produkte im Überblick

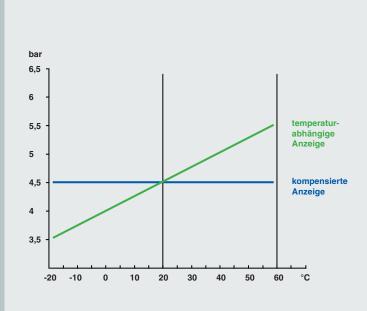
Wissenswertes über SF₆

Schwefelhexafluorid SF₆

SF ist ein synthetisches Gas. Das inerte Gas ist farb- und geruchlos, nicht giftig und nicht brennbar. Es ist jedoch gemäß dem Kyoto-Protokoll eines der sechs stärksten Treibhausgase und deshalb überwachungspflichtig.

Seine einmaligen elektrischen Eigenschaften prädestinieren SF₆-Gas und seine Verschnitte mit N2 für den Schaltanlagenbau bis über 1.000.000 Volt. Selbst bei Nieder- und Mittelspannungsschaltanlagen halten SF₆-Gas isolierte Anlagen wegen der Vorteile, die die Gasisolation bietet, zunehmend Einzug.

Um einerseits die sichere Funktion einer Schaltanlage zu garantieren, ist eine Mindestgasdich-


> stellt werden, dass Emissionen in die Umwelt vermieden werden. Es ist erforderlich, die gasisolierten Kammern jeder Schaltanlage zu überwachen, sicherheitsrelevante Alarme oder Schaltvorgänge auszulösen und den aktuellen Status auch in ein Datennetz zu senden.

te erforderlich, andererseits soll sicherge-

Haupteinsatzgebiete Gasisolierte Schaltfelder (GIS) Hochspannungsanlagen Mittelspannungsanlagen Gasisolierte Rohrleiter (GIL) Trenner (Breaker) Messwandler Transformatoren Leistungsschalter Lastschalter Ring Main Unit (RMU)

Temperaturkompensation

Die Durchschlagfestigkeit und das Lichtbogenlöschvermögen gasisolierter Anlagen wird von der Gasdichte bestimmt. Diese darf den konzipierten Minimalwert keinesfalls unterschreiten, eine explosionsartige Zerstörung der Anlage wäre die Folge. Gasisolierte Anlagen werdenhäufigim Außenbereich aufgestellt und unterliegen schwankenden Umwelte inflüssen. Temperaturen zwischen – 40°C und +70°C sind keine Seltenheit. Auch außerhalb dieses Bereiches können spezielle Lösungen realisiert werden.

Bleibt im isochoren System die
Gasdichte konstant, ändert sich mit der
Umgebungstemperatur der Systemdruck. Damit
sind für die Gasdichteüberwachung klassische
Kontaktmanometer und Drucktransmitter
ungeeignet. Um zuverlässig im Fall von
Leckagen schalten zu können, müssen die
Geräte temperaturkompensiert werden.
Referenztemperatur dafür ist in der Regel +20 °C.
Der Messwert wird dabei so kompensiert, dass die
Anzeige bei jeder Temperatur des Bereiches stets
der Situation von +20 °C entspricht.

Prinzipien der Gasdichtemessung

Rohrfeder-Manometer

Druckmessgeräte mit unkompensierter AnzeigeMessung des momentanen SF₆-Gasdruckes.
Bei gleichzeitiger Kenntnis der Gastemperatur
(Thermometer erforderlich) kann auf die Gasdichte bei Referenztemperatur +20 °C rückgeschlossen werden.

elektromechanisch

Gasdichtewächter

Druckmessgeräte mit kompensierter Anzeige und elektrischer Zusatzeinrichtung

Um elektrische Zusatzeinrichtung erweiterter Dichteanzeiger ermöglicht permanente Gasdichteüberwachung und Auslösen von Alarmen. Bimetallkompensierte Anzeige und Schaltfunktion zur Referenztemperatur +20 °C

Gasdichteanzeiger

Druckmessgeräte mit kompensierter Anzeige

Messprinzip lässt eine ideale Temperaturkompensation bei nur einem einzigen Kalibrierdruck zu.

Bimetallkompensierte Anzeige zur

Referenztemperatur +20 °C

elektronisch

Gasdruck- und Gasdichtetransmitter

All-in-One

mechanisch

Permanente Messung von Druck und Temperatur des SF_{ϵ} -Gases ermöglicht Kompensation des kompletten SF_{ϵ} -Kennfeldes mittels integriertem Mikroprozessor.

Rohrfeder-Manometer

Druckmessgeräte mit unkompensierter Anzeige

Messung des tatsächlichen SF₆-Gasdruckes bei momentaner Gastemperatur. Bei gleichzeitiger Kenntnis der Gastemperatur kann anhand von Tabellen oder mittels spezieller Skalen auf die Gasdichte bzw. den Gasdruck bei Referenztemperatur +20 °C rückgeschlossen werden.

RChgG	63 - 3	rm
-------	--------	----

Gehäuse	CrNi-Stahl	
Ring	Bördelring CrNi-Stahl	
Gehäusefüllung	RChg RChgG	ohne Gehäusefüllung, mit Glyzerin oder Silikonöl
Genauigkeitsklasse/ Nenngröße	1,6 1,0	NG 63 mm NG 100, 160 mm
Messstoffberührte Teile	CrNi-Stahl, Schutzgasschweißung, Leckrate < 10 ⁻⁹ mbar l/s	
Umgebungstempe- ratur*	-20 / +60 °C	
Anzeigebereiche	0 – 2,5 mbar b	is 0 – 1600 bar
Prozessanschluss	NG 100, 160	G¼B G½B onderanschlüsse
Übersicht	1000	

RChgG 100 - 3 Sonderanschluss mit Flansch

^{*} andere auf Anfrage

Gasdichteanzeiger

Druckmessgeräte mit kompensierter Anzeige

Die Anzeige des tatsächlichen SF_e -Gasdruckes wird anhand der Gerätetemperatur, die der Gastemperatur gleich sein sollte, korrigiert, sodass der Gasdruck angezeigt wird, der bei gleicher Gasdichte und Referenztemperatur +20 °C im Gasraum vorherrschen würde. Die Bimetall-Kompensation wird auf eine Bezugsisochore des SF_e -Gases, den sogenannten Kalibrierdruck p_e , dimensioniert, der hierbei dem nominalen Fülldruck p_e des Gasraumes entspricht.

» Edelstahlausführung für messstoffberührte Teile und Gehäuse «

- Korrosionsfrei, temperatur- und witterungsbeständig
- » 100 % He-Lecktest «
- Leckagen des Messsystems werden ausgeschlossen
- » Sonderskalen «
- Zifferblattgestaltung nach Kundenvorgabe
- » Bördelringgehäuse «
- Gehäuse manipulationssicher verschlossen
 Hermetische Dichtheit, auch bei
 extremen Temperaturen
- » Bimetallkompensation «
- Anzeigekorrektur zu Referenztemperatur
 +20 °C für SF₆-Gas oder SF₆/N₂-Gasgemische

RChg 63 – 3 r SF6		
Gehäuse	CrNi-Stahl	
Ring	Bördelring CrNi-Stahl	
Gehäusefüllung	RChg ohne Gehäusefüllung	
Genauigkeitsklasse	1,0 bei Betriebstemperatur +20 °C 2,5 bei Betriebstemperaturen –20 / +60 °C	
Nenngröße	63 mm	
Messstoffberührte Teile	CrNi-Stahl, Schutzgasschweißung, Leckrate < 10 ⁻⁹ mbar l/s	
Bemessungstem- peratur*	-20 / +60 °C	
Anzeigebereiche	Messspannen 1,6 bis 16 bar Relativ- oder Absolutdruck	
Prozessanschluss	G ¼ B, Flansch und Sonderanschlüsse	
Anschlusslage	unten, 9 Uhr, 12 Uhr, 3 Uhr oder rückseitig ausmittig, rückseitig mittig	

RChg 100 – 3 SF6		
Gehäuse	CrNi-Stahl	
Ring	Bördelring CrNi-Stahl	
Gehäusefüllung	RChg RChgG RChgN	ohne Gehäusefüllung Glyzerin oder Silikonöl Stickstoff
Genauigkeitsklasse	1,0 bei Betriebstemperatur +20 °C 2,5 bei Betriebstemperaturen –20 / +60 °C	
Nenngröße	100, 160 mm	
Messstoffberührte Teile	CrNi-Stahl, Schutzgasschweißung, Leckrate < 10 ⁻⁹ mbar l/s	
Bemessungstem- peratur*	-20 / +60 °C	
Anzeigebereiche	Messspannen 1,6 bis 16 bar Relativ- oder Absolutdruck	
Prozessanschluss	G½B, Flansch und Sonderanschlüsse	
Anschlusslage	unten, 9 Uhr, 12 Uhr, 3 Uhr oder rückseitig ausmittig	

^{*} andere auf Anfrage

Gasdichtewächter

Druckmessgeräte mit kompensierter Anzeige und elektrischer Zusatzeinrichtung

Ein Gasdichtewächter ist ein Dichteanzeiger, der um elektrische Grenzwertschalter mit Magnetsprungkontakten erweitert ist. Die Bimetallkompensation wird auf eine Bezugsisochore des SF₆-Gases, den sogenannten Kalibrierdruck p_c, dimensioniert, der in dieser Applikation typischerweise dem ersten Schaltpunkt in fallender Richtung entspricht. Kalibrierdruck, Schaltpunkteinstellung und Skale nach Kundenspezifikation.

- » Option: Stehblitzstoßspannung 7 kV «
- Erhöhte Sicherheit gegen Überspannung Vergrößerte Luft- und Kriechstrecken
- » Elektrische Schalteinrichtung «
- Bis zu 3-fachem Magnetsprungkontakt, Schaltfunktionen: Öffner oder Schließer oder Kombination beider nach Kundenspezifikation
- » Lasergesicherte Schaltpunkte «
- Erhöhte mechanische Schockfestigkeit
- » Bimetallkompensation «
- Anzeigekorrektur zu Referenztemperatur +20 °C für SF₆-Gas oder SF₆/N₂-Gasgemische
- » Bördelringgehäuse «
- Gehäuse manipulationssicher verschlossen
- Hermetische Dichtheit, auch bei extremen Temperaturen

RChgN 63 – 3 SF6		
Gehäuse	CrNi-Stahl	
Ring	Bördelring CrNi-Stahl	
Gehäusefüllung	RChgN Stickstoff	
Genauigkeitsklasse	1,0 bei Betriebstemperatur +20 °C 2,5 bei Betriebstemperaturen –20 / +60 °C	
Nenngröße	63 mm	
Messstoffberührte Teile	CrNi-Stahl, Schutzgasschweißung, Leckrate < 10 ⁻⁹ mbar l/s	
Bemessungs- temperatur*	-20 / +60 °C	
Anzeigebereiche	Messspannen 2,5 bis 16 bar Relativ- oder Absolutdruck	
Prozessanschluss*	G1/4B	
Anschlusslage*	rückseitig ausmittig	
Grenzsignalgeber	max. 2 Kontaktschalter max. Schaltleistung 30 V / 50 V A, max. 1 A, max. Schaltspannung 250 V	

RChgOe 100 – 3 SF6		
Gehäuse	CrNi-Stahl	
Ring	Bördelring CrNi-Stahl	
Gehäusefüllung	RChg RChgOe RChgN	ohne Gehäusefüllung Silikonöl Stickstoff
Genauigkeitsklasse	1,0 bei Betriebstemperatur +20 °C 2,5 bei Betriebstemperaturen –20 / +60 °C	
Nenngröße	100 mm	
Messstoffberührte Teile	CrNi-Stahl, Schutzgasschweißung, Leckrate < 10 ⁻⁹ mbar l/s	
Bemessungs- temperatur*	–20 / +60 °C, –40 / +40 °C	
Anzeigebereiche	Messspannen 2,5 bis 16 bar Relativ- oder Absolutdruck	
Prozessanschluss	G½B, M20x1,5, G¾B Flansch und Sonderanschlüsse	
Anschlusslage	unten, 9 Uhr, 12 Uhr, 3 Uhr oder rückseitig ausmittig	
Grenzsignalgeber	max. 3 Kontaktschalter max. Schaltleistung 30 V / 50 V A, max. 1 A, max. Schaltspannung 250 V	
Datenblatt	1902	

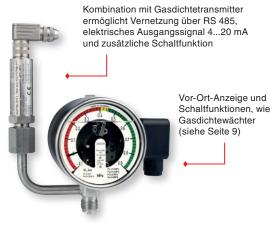
^{*} andere auf Anfrage

Gasdruck- und Gasdichtetransmitter

All-in-One - von -40 °C bis +60 °C

Der DIGPTMvSF6 vereint eine hermetisch dicht verschweißte Edelstahl-Druckmesszelle, einen Platin-Temperatursensor und einen Mikrocontroller mit 2 Schaltausgängen, einer RS 485-Schnittstelle und Zweileiterfunktionalität 4...20 mA in einem Gerät. Ein einstellbarer elektronischer Tiefpass unterdrückt Fehlschaltungen auf Grund von mechanischem Schock, ausgelöst durch Schaltungen der Schaltanlage. Geräteadresse, Schaltfunktionen und -punkte, Softwaretiefpass, Offset und Skalierung sind über die Software USSCOM auch durch den Anwender administrierbar.

DIGPTMvSF6

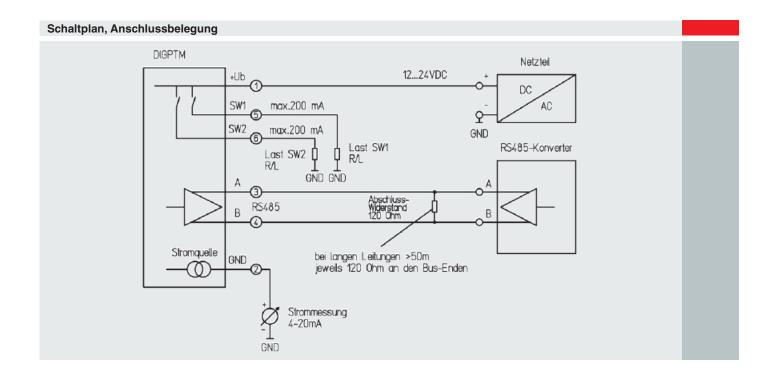

	« All-in-One »
	« 2 Sensoren: Druck und Temperatur »
	« Präzision im gesamten Messbereich »
« Ko	rrosionsfrei und robust »
	« Software »

Analog: 2-I eiter 4	20 m A

- Digital: RS 485
- Druckschalter: 2 separate Schalter, frei programmierbar
- Permanente Messung von Druck und Temperatur des SF₆-Gases ermöglicht mittels Mikroprozessor eine punktgenaue Berechnung der Gasdichte bzw. des Gasdruckes bei +20 °C
- Genauigkeit von 0,5 % über den gesamten spezifizierten
- Messbereich von -40 °C bis +60 °C
- Kein Kalibrierdruck mehr erforderlich
- Laserverschweißte Edelstahlausführung hermetisch dicht
 - EMV dichtes Gehäuse (EMV-Festigkeit mit 2-facher Industrienorm)
- Hoher IP-Schutzgrad (IP67), optional IP68 (freies Kabelende)
- Parametrierung der Schaltpunkte und -funktionen, Tiefpass, Einheiten Anzeige von Messwert und Sensortemperatur
- Sichern und Rückspeichern von Konfigurationen

DIGPTMvSF6 CrNi-Stahl, mit Prozessanschluss Gehäuse verschweißt piezoresistive Messzelle: CrNi-Stahl, Messzelle Membran innenliegend: CrNi-Stahl ≤0.5 im Bemessungstemperaturbereich (einschließlich Nichtlinearität, Hysterese Genauigkeitsklasse und Nichtwiederholbarkeit) Ausgangssignal analog: 2-Leiter 4...20 mA, digital: RS 485 Spannungs-12 bis 24 V DC (±25 %), verpolungssicher versorgung 2 PNP-Schalter 0,2 A, für ohmsche, kapazi-Schaltausgänge tive und induktive Last, kurzschlussfest Bemessungs--40 / +60 °C temperatur 0 - 60 g/l Gasdichte (0 - 8,87 bar abs. Gasdruck) SF, bei +20 °C Anzeigebereiche 0 - 10 bar abs. Gasdruck $(0 - 68,9 \text{ g/I Gasdichte}) \text{ SF}_6 \text{ bei } +20 \,^{\circ}\text{C}$ Kompensation ausschließlich für Gasphase! Prozessanschluss* G 1/2 B, CrNi-Stahl Berstsicherheit >100 bar Datenblatt

Kombination aus Gasdichtewächter und -transmitter



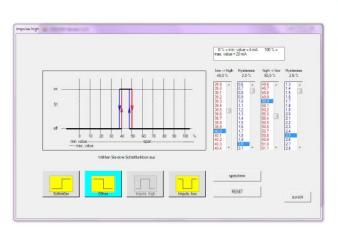
» 2 voneinander unabhängige Messprinzipien erhöhen die Zuverlässigkeit und Sicherheit «

^{*} andere auf Anfrage

Elektrischer Anschluss

Der nachfolgend dargestellte Schaltplan zeigt den elektrischen Anschluss des DIGPTMvSF6 in vollständiger Konfiguration. Das Gerät kann auch mit nur teilweiser Beschaltung arbeiten, d.h. ohne Nutzung der RS 485 Schnittstelle oder nur teilweiser Nutzung der Schaltausgänge oder nur als Zweileiter zwischen den Anschlüssen 1 und 2.

Optionen

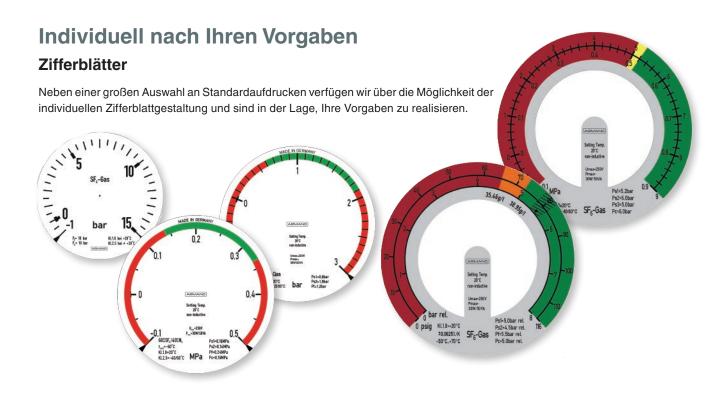

Digital anzeigbar

Alle Geräteparameter auf einen Blick

Mit unserer Software USSCOM haben Sie die Möglichkeit, die am RS 485 verfügbaren Transmitter DIGPTMvSF6 Ihren Anforderungen gemäß anzupassen, die Messwerte in verschiedenen Einheiten darzustellen sowie Geräteinformationen einzusehen.

Menü Schalterkonfiguration

Einstellung von Schaltfunktionen, -punkten und -hysterese, siehe auch B50


Einstellung des Softwaretiefpasses (elektronische Drossel), siehe auch B50

Wir fertigen nach Kundenspezifikation

Prozessanschlüsse

Unser Lieferumfang enthält eine Vielzahl an Prozessanschlüssen unterschiedlichster Normen und Nennweiten. Sie benötigen einen anderen Anschluss? Für uns kein Problem! Gerne finden wir eine Lösung gemäß Ihrer Spezifikation. Bitte sprechen Sie uns an!

Zertifikate und Zulassungen

Ein hoher Qualitätsstandard ist für uns selbstverständlich. Nicht nur das Unternehmen ist nach höchsten Qualitätsstandards zertifiziert, auch unser Produktportfolio ist nach vielfältigen Maßgaben gefertigt und zum Großteil zugelassen. Die ARMANO Messtechnik GmbH ist nach DIN EN ISO 9001 zertifiziert.

Noch Fragen?

Wir stehen Ihnen für Fragen und Hintergrundinformationen zu unseren Manometern und Thermometern jederzeit zur Verfügung und helfen Ihnen gerne weiter. Nur durch exakte, vollständige Angaben zum Prozess oder durch eine genaue Spezifikation des benötigten Messsystems ist es uns möglich, das Messgerät für Ihren Einsatzfall zu optimieren. Unsere Mitarbeiter/-innen unterstützen Sie gerne beim Ausfüllen unserer "Checklisten", die Sie auf Anforderung erhalten.

ARMANO Messtechnik GmbH

Standort Beierfeld Am Gewerbepark 9 08344 Grünhain-Beierfeld Tel.: +49 3774 58 - 0 Fax: +49 3774 58 - 545 mail@armano-beierfeld.com

Standort Wesel

Manometerstraße 5 46487 Wesel-Ginderich Tel.: +49 2803 9130 - 0 Fax: +49 2803 1035 mail@armano-wesel.com

Copyright® 2019 • BB_SF6 21 (Stand 03/19)
Konzept, Design und Realisierung: ARMANO Messtechnik GmbH · Bildnachweis: www.fotolia.com
Technische Änderungen, Austausch von Werkstoffen und Druckfehler vorbehalten!